The Classification Problem for S-local Torsion-free Abelian Groups of Finite Rank

نویسنده

  • SIMON THOMAS
چکیده

Suppose that n ≥ 2 and that S, T are sets of primes. Then the classification problem for the S-local torsion-free abelian groups of rank n is Borel reducible to the classification problem for the T -local torsion-free abelian groups of rank n if and only if S ⊆ T .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE CLASSIFICATION PROBLEM FOR p-LOCAL TORSION-FREE ABELIAN GROUPS OF FINITE RANK

Let n ≥ 3. We prove that if p 6= q are distinct primes, then the classification problems for p-local and q-local torsion-free abelian groups of rank n are incomparable with respect to Borel reducibility.

متن کامل

Borel reductions of profinite actions of SLn(Z)

Greg Hjorth and Simon Thomas proved that the classification problem for torsion-free abelian groups of finite rank strictly increases in complexity with the rank. Subsequently, Thomas proved that the complexity of the classification problems for p-local torsion-free abelian groups of fixed rank n are pairwise incomparable as p varies. We prove that if 3 ≤ m < n and p, q are distinct primes, the...

متن کامل

On the Classification Problem for Rank 2 Torsion-free Abelian Groups

We study here some foundational aspects of the classification problem for torsionfree abelian groups of finite rank. These are, up to isomorphism, the subgroups of the additive groups (1n,­), for some n ̄ 1, 2, 3,... . The torsion-free abelian groups of rank% n are the subgroups of (1n,­). For n ̄ 1, that is, the subgroups of (1,­), the isomorphism problem was solved by Baer in the 1930s (see [10...

متن کامل

The Classification of Torsion-free Abelian Groups of Finite Rank up to Isomorphism and up to Quasi-isomorphism

We prove that the isomorphism and quasi-isomorphism relations on the p-local torsion-free abelian groups of fixed finite rank n are incomparable with respect to Borel reducibility.

متن کامل

Borel superrigidity and the classification problem for the torsion-free abelian groups of finite rank

In 1937, Baer solved the classification problem for the torsion-free abelian groups of rank 1. Since then, despite the efforts of many mathematicians, no satisfactory solution has been found of the classification problem for the torsion-free abelian groups of rank n ≥ 2. So it is natural to ask whether the classification problem for the higher rank groups is genuinely difficult. In this article...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1984